239 research outputs found

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    A Bayesian account of the sensory-motor interactions underlying symptoms in Tourette syndrome

    Get PDF
    Tourette syndrome is a hyperkinetic movement disorder. Characteristic features include tics, recurrent movements that are experienced as compulsive and “unwilled”; uncomfortable premonitory sensations that resolve through tic release; and often, the ability to suppress tics temporarily. We demonstrate how these symptoms and features can be understood in terms of aberrant predictive (Bayesian) processing in hierarchical neural systems, explaining specifically: why tics arise, their “unvoluntary” nature, how premonitory sensations emerge, and why tic suppression works—sometimes. In our model, premonitory sensations and tics are generated through over-precise priors for sensation and action within somatomotor regions of the striatum. Abnormally high precision of priors arises through the dysfunctional synaptic integration of cortical inputs. These priors for sensation and action are projected into primary sensory and motor areas, triggering premonitory sensations and tics, which in turn elicit prediction errors for unexpected feelings and movements. We propose experimental paradigms to validate this Bayesian account of tics. Our model integrates behavioural, neuroimaging, and computational approaches to provide mechanistic insight into the pathophysiological basis of Tourette syndrome

    Neural correlates of fear: insights from neuroimaging

    Get PDF
    Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions), and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of the insights into fear, anxiety, and avoidance at the individual level extrapolate to groups and populations and can be meaningfully applied to economics, prejudice, and politics. Fear is ultimately a contagious social emotion

    Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans

    Get PDF
    BACKGROUND: Systemic infections commonly cause sickness symptoms including psychomotor retardation. Inflammatory cytokines released during the innate immune response are implicated in the communication of peripheral inflammatory signals to the brain. METHODS: We used functional magnetic resonance brain imaging (fMRI) to investigate neural effects of peripheral inflammation following typhoid vaccination in 16 healthy men, using a double-blind, randomized, crossover-controlled design. RESULTS: Vaccination had no global effect on neurovascular coupling but markedly perturbed neural reactivity within substantia nigra during low-level visual stimulation. During a cognitive task, individuals in whom typhoid vaccination engendered higher levels of circulating interleukin-6 had significantly slower reaction time responses. Prolonged reaction times and larger interleukin-6 responses were associated with evoked neural activity within substantia nigra. CONCLUSIONS: Our findings provide mechanistic insights into the interaction between inflammatio

    The impact of yohimbine-induced arousal on facets of behavioural impulsivity

    Get PDF
    Rationale State-dependent changes in physiological arousal may influence impulsive behaviours. Objectives To examine the relationship between arousal and impulsivity, we assessed the effects of yohimbine (an α2-adrenergic receptor antagonist, which increases physiological arousal via noradrenaline release) on performance on established laboratory-based impulsivity measures in healthy volunteers. Methods Forty-three participants received a single dose of either yohimbine hydrochloride or placebo before completing a battery of impulsivity measures. Blood pressure and heart rate were monitored throughout the study. Results Participants in the yohimbine group showed higher blood pressure and better response inhibition in the Stop Signal Task, relative to the placebo group. Additionally, individual changes in blood pressure were associated with performance on Delay Discounting and Information Sampling tasks: raised blood pressure following drug ingestion was associated with more far-sighted decisions in the Delay Discounting Task (lower temporal impulsivity) yet reduced information gathering in the Information Sampling Task (increased reflection impulsivity). Conclusions These results support the notion that impulsive behaviour is dependent upon state physiological arousal; however, distinct facets of impulsivity are differentially affected by physiological changes

    Following one's heart: cardiac rhythms gate central initiation of sympathetic reflexes

    Get PDF
    Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety

    Binge drinking is associated with attenuated frontal and parietal activation during successful response inhibition in fearful context

    Get PDF
    Binge drinking is associated with increased impulsivity and altered emotional processing. The current study investigated, in a group of university students who differed in their level of binge drinking, whether the ability to inhibit a pre-potent response and to delay gratification is disrupted in the presence of emotional context. We further tested whether functional connectivity within intrinsic resting-state networks was associated with alcohol use. Higher incidence of binge drinking was associated with enhanced activation of the lateral occipital cortex, angular gyrus, the left frontal pole during successful response inhibition irrespective of emotional context. This observation suggests a compensatory mechanism. However, higher binge drinking attenuated frontal and parietal activation during successful response inhibition within a fearful context, indicating the selective emotional facilitation of inhibitory control. Similarly, higher binge drinking was associated with attenuated frontopolar activation when choosing a delayed reward over an immediate reward within the fearful, relative to the neutral, context. Resting-state functional data analysis revealed that binge drinking decreased coupling between right supramarginal gyrus and Ventral Attention Network, indicating alcohol-associated disruption of functional connectivity within brain substrates directing attention. Together, our results suggest that binge drinking makes response inhibition more effortful, yet emotional (more arousing) contexts may mitigate this; disrupted functional connectivity between regions underlying adaptive attentional control, is a likely mechanism underlying these response inhibition effects associated with binge drinking
    corecore